Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Patterns (N Y) ; 3(4): 100453, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1670996

ABSTRACT

One of the impacts of the coronavirus disease 2019 (COVID-19) pandemic has been a push for researchers to better exploit synthetic data and accelerate the design, analysis, and modeling of clinical trials. The unprecedented clinical efforts caused by COVID-19's emergence will certainly boost future robust and innovative approaches of statistical sciences applied to clinical fields. Here, we report the development of SASC, a simple but efficient approach to generate COVID-19-related synthetic clinical data through a web application. SASC takes basic summary statistics for each group of patients and attempts to generate single variables according to internal correlations. To assess the "reliability" of the results, statistical comparisons with Synthea, a known synthetic patient generator tool, and, more importantly, with clinical data of real COVID-19 patients are provided. The source code and web application are available on GitHub, Zenodo, and Mendeley Data.

2.
Front Immunol ; 12: 646972, 2021.
Article in English | MEDLINE | ID: covidwho-1438415

ABSTRACT

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A growing number of studies have focused on immunological determinants to develop better biomarkers for therapies. Aim: Studies of the insurgence of immunity is at the core of both SARS-CoV-2 vaccine development and therapies. This paper attempts to describe the insurgence (and the span) of immunity in COVID-19 at the population level by developing an in-silico model. We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting viral load, affinity to the ACE2 receptor, and age in an artificially infected population on the course of the disease. Methods: We use a stochastic agent-based immune simulation platform to construct a virtual cohort of infected individuals with age-dependent varying degrees of immune competence. We use a parameter set to reproduce known inter-patient variability and general epidemiological statistics. Results: By assuming the viremia at day 30 of the infection to be the proxy for lethality, we reproduce in-silico several clinical observations and identify critical factors in the statistical evolution of the infection. In particular, we evidence the importance of the humoral response over the cytotoxic response and find that the antibody titers measured after day 25 from the infection are a prognostic factor for determining the clinical outcome of the infection. Our modeling framework uses COVID-19 infection to demonstrate the actionable effectiveness of modeling the immune response at individual and population levels. The model developed can explain and interpret observed patterns of infection and makes verifiable temporal predictions. Within the limitations imposed by the simulated environment, this work proposes quantitatively that the great variability observed in the patient outcomes in real life can be the mere result of subtle variability in the infecting viral load and immune competence in the population. In this work, we exemplify how computational modeling of immune response provides an important view to discuss hypothesis and design new experiments, in particular paving the way to further investigations about the duration of vaccine-elicited immunity especially in the view of the blundering effect of immunosenescence.


Subject(s)
COVID-19/immunology , Models, Immunological , SARS-CoV-2/physiology , Antibodies, Viral/blood , COVID-19/epidemiology , Cohort Studies , Computer Simulation , Cytokine Release Syndrome/immunology , Cytokines/blood , Humans , Immunity, Humoral , Immunosenescence , Prognosis , SARS-CoV-2/immunology , Severity of Illness Index , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL